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Abstract 

This research paper investigates the realm of Bochner-Riesz summability in two dimensions, 

providing distinct results and insights on the convergence properties of Fourier series. More 

precisely, the study examines the convergence properties of Fourier series. This article 

establishes two significant theorems: Theorem 4.1.1 offers proof that the Bochner-Riesz 

operator in 𝐿2(ℝ2) is bounded for a certain multiplier function. However, this claim is 

contingent upon a crucial criterion. Theorem 4.1.2 presents precise estimates that indicate the 

logarithmic dependence on certain parameters and highlight the intricate behavior of the 

operator. These theorems have potential applications in signal processing and imaging, and 

they also serve as a solid foundation for comprehending harmonic analysis and singular integral 

operators. The last portion of the paper has some suggestions for further investigation. The 

proposals include doing research on higher dimensions, investigating the impact of additional 

variables, and exploring practical applications in real-world scenarios. 

Keywords: Bochner-Riesz Summability, Fourier Series, Harmonic Analysis, Singular Integral 

Operators, Sharp Estimates, Critical Index. 

I. INTRODUCTION 

1.1. Overview of Bochner-Riesz Summability and Its Importance 

Bochner-Riesz summability is a fundamental subject in harmonic analysis that plays a crucial role in 

understanding the convergence properties of Fourier series. It focuses on the convergence properties of 

Fourier series. The Bochner-Riesz summation is a technique that involves the summation of many 

Fourier series in a spherical manner. The first exploration of this technique was conducted by Fefferman 

[3] and [5]. Understanding the behavior of functions in different situations is crucial when it comes to 

summarizing them. 

The convergence behavior of functions in high-dimensional spaces, specifically in 𝑅2, may be analyzed 

using the Bochner-Riesz summation operator, which is defined in terms of multiple Fourier series. The 

subsequent analysis of Bochner-Riesz summability beyond the critical index is influenced by this first 

section, which establishes the context for the discussion. 

1.2. Statement of the Problem: Focus on Summability Below the Critical Index 

The primary topic of this work is the Bochner-Riesz summability below the critical index. The critical 

index is a crucial threshold number for understanding the convergence of Fourier series. By examining 

summability below this critical threshold, it becomes feasible to perform a more thorough examination 

of the conditions in which Bochner-Riesz summation is successful. 

This work aims to enhance the existing knowledge by providing insights into the behavior of the 

Bochner-Riesz summation operator when it surpasses the critical index. 

A comprehensive comprehension of this component is crucial for a thorough knowledge of the 

convergence properties of Fourier series, especially in two-dimensional domains. 
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1.3.  Importance of Sharp Estimates in Bochner-Riesz Summation 

Sharp estimates play a crucial role in the assessment of Bochner-Riesz summability. The estimates 

correctly determine the bounds of the norms of the operators participating in the summing process, 

resulting in exact boundaries. For this inquiry, it is crucial to get accurate estimations in order to 

accurately describe the behavior of the Bochner-Riesz summing operator when the index is below the 

critical level. 

Precise estimates are crucial since they may reveal the optimal rate of convergence, facilitating a more 

comprehensive comprehension of the behavior of Fourier series. That is why precise estimations are 

crucial. The aim of this study is to examine the importance of precise estimates in the context of 

Bochner-Riesz summation, with the goal of providing a better understanding of the convergence 

process. 

II. LITERATURE REVIEW 

2.1.  Overview of Relevant Literature on Bochner-Riesz Summability 

Sharp estimates play a crucial role in the analysis of Bochner-Riesz summability. The estimates correctly 

restrict the norms of the operators involved in the summation process, resulting in accurate bounds. For 

this inquiry, it is crucial to get accurate estimations in order to accurately describe the behavior of the 

Bochner-Riesz summing operator when the index is below the critical level. 

Precise estimates are crucial since they may reveal the optimal rate at which convergence occurs, so 

facilitating a more comprehensive comprehension of the behavior of Fourier series. The significance of 

precise estimations is the rationale for their importance. The aim of this study is to examine the 

importance of precise estimates in the context of Bochner-Riesz summation, with the goal of providing 

a better understanding of the convergence process. 

2.2.  Previous Results and Methodologies in the Field 

In the field of Bochner-Riesz summability, a number of notable findings have been observed and 

developed. The inequalities that Fefferman developed for highly singular convolution operators [2] are 

an essential component in comprehending the manner in which Fourier series converge. The spectrum 

analysis of Fourier multipliers has been significantly improved as a result of the multiplier issue for the 

ball, which was addressed in Fefferman's work [2]. 

Methodologically, researchers have employed a variety of tools, including techniques from real and 

harmonic analysis. Fefferman's inequalities [5], for example, involve intricate analyses of convolution 

operators, showcasing the depth of mathematical methods employed in this field. Additionally, the study 

of oscillatory integrals and multiplier problems by Carleson and Sjolin [1] involves detailed 

examinations of integrals with oscillatory behavior. 

2.3.  Identification of Gaps and Motivations for the Current Study 

While the existing literature provides a solid foundation for understanding Bochner-Riesz summability, 

there exist gaps and unexplored territories that warrant further investigation. One motivation for the 

current study arises from the need to extend the understanding of BochnerRiesz summability below the 

critical index. The critical index represents a threshold beyond which the convergence behavior of 

Fourier series undergoes significant changes, and further exploration in this regime is essential for a 

comprehensive understanding [4]. 

Moreover, existing results may leave room for refinement or improvement, particularly in the context 

of sharp estimates. The identification of these gaps and the motivation to address them form the driving 

force behind the current research, aiming to contribute new insights and advancements to the existing 

body of knowledge. 

III. PRELIMINARIES 

3.1.  Definition and Background of Bochner-Riesz Summability 

Bochner-Riesz summability is a concept deeply rooted in harmonic analysis, providing a framework for 

understanding the convergence properties of Fourier series, especially in higherdimensional spaces such 

as R∧2. To delve into this topic, let's establish some fundamental mathematical definitions and concepts: 
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Definition 3.1.1: Fourier Transform and Fourier Series 

Given a locally integrable function 𝑓 on ℝ2, its Fourier transform 𝑓(𝜉) is defined as: 

𝑓(𝜉) = ∫  
ℝ2

𝑒𝑖𝑥⋅𝜉𝑓(𝑥)𝑑𝑥,  𝜉 ∈ ℝ2 

Here, 𝑥 ⋅ 𝜉 denotes the standard inner product in ℝ2. 

A Fourier series for 𝑓 is given by: 

𝑓(𝑥) = ∫  
ℝ2

𝑒𝑖𝑥⋅𝜉𝑓(𝜉)𝑑𝜉,  𝑥 ∈ ℝ2 

Definition 3.1.2: Bochner-Riesz Summability 

The Bochner-Riesz summation operator 𝑇𝜆 is defined in terms of the Fourier multiplier 𝑚𝜆(𝜉) as 

follows: 

(𝑇𝜆𝑓)∧(𝜉) = 𝑚𝜆(𝜉)𝑓(𝜉),   for 𝑓 ∈ 𝐶0
∞(ℝ2) 

where 𝑚𝜆(𝜉) = (1 − |𝜉|2)𝜆 if |𝜉| < 1 and 𝑚𝜆(𝜉) = 0 otherwise. 

 

Background: Bochner-Riesz summability is particularly significant in the study of Fourier series 

convergence. The critical index 𝜆𝑐 is a crucial parameter, and the behavior of 𝑇𝜆 depends heavily on 

whether 𝜆 is above or below this critical threshold. 

In the framework of this study, our primary objective is to investigate Bochner-Riesz summability below 

the critical index. This will serve as a mathematical basis for the further analysis that will be conducted. 

When it comes to the study of Fourier series convergence, the critical index is an essential quantity since 

it defines a threshold at which the behavior of the summation operator undergoes major changes. 

3.2.  Introduction to Critical Index and Its Implications 

When it comes to the study of Bochner-Riesz summability, the critical index is an essential parameter 

that plays a significant role in defining the convergence behavior of Fourier series. Applying a more 

mathematical approach, let's investigate this idea in further depth: 

Definition 3.2.1: Critical Index 

The critical index, denoted by 𝜆𝑐, is defined as the supremum of all values of 𝜆 for which the Bochner-

Riesz operator 𝑇𝜆 is bounded on 𝐿2(ℝ2). Mathematically, it is given by: 

𝜆𝑐 = sup {𝜆: ∥∥𝑇𝜆∥∥𝐿2(ℝ2)
< ∞} 

It is very necessary to have a solid understanding of the critical index in order to accurately characterize 

the convergence features of the Bochner-Riesz operator. In addition to having deep ramifications, the 

critical index has an effect on the behavior of the summation operator, which is determined by the 

operator's location in relation to the threshold. 

Implications of the Critical Index: 

Convergence Behavior: For 𝜆 < 𝜆𝑐, the Bochner-Riesz operator 𝑇𝜆 is known to be bounded on 𝐿2(ℝ2), 

signifying a well-behaved convergence of Fourier series. However, for 𝜆 > 𝜆𝑐, the operator becomes 

unbounded, leading to more intricate convergence patterns. 

Threshold for Convergence: The critical index serves as a threshold that demarcates the boundary 

between well-behaved and divergent Fourier series. It delineates the values of 𝜆 for which the Bochner-

Riesz operator ensures convergence in the 𝐿2(ℝ2) sense. 

Understanding the critical index and its implications is crucial for our focus on Bochner-Riesz 

summability below this threshold in this research. Investigating the behavior of the operator below the 
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critical index provides insights into the nuanced convergence properties of Fourier series in two 

dimensions. 

This introduction lays the mathematical foundation for comprehending the critical index and its role in 

the subsequent analysis of Bochner-Riesz summability. 

3.3.  Overview of Sharp Estimates and Their Importance 

In the realm of Bochner-Riesz summability, the concept of sharp estimates is fundamental for 

understanding the convergence behavior of Fourier series operators. Let's provide a more mathematical 

approach to this key aspect: 

Definition 3.3.1: Sharp Estimates 

Sharp estimates in the context of Bochner-Riesz summability refer to precise bounds on the norms of 

operators involved in the summation process. More formally, let 𝑀 be an operator associated with the 

Bochner-Riesz summation, and a sharp estimate is an inequality of the form: 

∥ 𝑀𝑓 ∥𝐿2(ℝ2)≤ 𝐶 ⋅ Φ (∥ 𝑓 ∥𝐿2(ℝ2)) 

where 𝐶 is a constant independent of the input function 𝑓, and Φ is a function that characterizes the rate 

of growth of the norm of 𝑓. 

Importance of Sharp Estimates: 

Sharp estimates offer the ideal rate at which the BochnerRiesz summation converges. This rate is 

referred to as the the optimal rate of convergence. They provide explanations on the rate at which the 

norms of the ensuing Fourier series may decay at the quickest feasible rate. 

Characterization of Operator Behavior: We are able to more clearly define the behavior of Bochner-

Riesz operators thanks to the assistance of sharp estimates. They provide a quantitative comprehension 

of the manner in which the operator engages with functions with regard to the maintenance of norms. 

Analysis of Convergence Patterns: For the purpose of examining the convergence patterns of Fourier 

series in two dimensions, having a solid understanding of sharp estimates remains essential. The 

effectiveness of the Bochner-Riesz summation in a variety of contexts may be evaluated with the 

assistance of this resource [10]. 

Mathematical Importance: The mathematical relevance resides in the meticulous examination of the 

behavior of the operator. For the purpose of establishing theorems about the boundedness of Bochner-

Riesz operators, sharp estimates need the use of complex mathematical inequalities, which often include 

the utilization of techniques from real and harmonic analysis [8]. 

In the context of this study, where the primary objective is to acquire precise estimates for Bochner-

Riesz summability that are lower than the critical index, the significance of these estimations is of the 

utmost importance. In addition to making a contribution to the general mathematical structure of the 

Bochner-Riesz summation [9], the sharp estimates will give a detailed knowledge of the convergence 

features. 

IV. MAIN RESULTS 

4.1.  Statement and Proof of the Main Theorems Related to Bochner-Riesz Summability Below 

the Critical Index 

In this part, we will discuss the primary theorems that apply to Bochner-Riesz summability below the 

critical index, along with proofs that are more in-depth. The application of these theorems is essential 

in order to determine how the Bochner-Riesz operator behaves inside the regime that has been 

established. 

Theorem 4.1.1: Bochner-Riesz Summability Below the Critical Index 

Let 𝜆𝑐 be the critical index for the Bochner-Riesz operator 𝑇𝜆. For 𝜆 < 𝜆𝑐, the operator 𝑇𝜆 is bounded 

on 𝐿2(ℝ2). 
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Proof of Theorem 4.1.1: 

The proof involves establishing a bound on the operator norm ∥∥𝑇𝜆∥∥𝐿2(ℝ2)
 for 𝜆 < 𝜆𝑐. We start by 

expressing 𝑇𝜆 as a convolution operator with an associated kernel 𝐾𝜆(𝑥) : 

𝑇𝜆𝑓(𝑥) = ∫  
ℝ2

𝐾𝜆(𝑥 − 𝑦)𝑓(𝑦)𝑑𝑦 

Next, we utilize the properties of the kernel 𝐾𝜆 and apply standard techniques from harmonic analysis 

to estimate the operator norm. The critical index 𝜆𝑐 plays a crucial role in bounding the operator norm, 

ensuring convergence in 𝐿2(ℝ2). 

A complex mathematical analysis is required for this proof. This analysis includes the decomposition of 

the kernel into a sum of functions and the application of relevant inequalities. 

Proof Outline: Theorem 4.1.1: Bochner-Riesz Summability Below the Critical Index 

Step 1: Representation of the Bochner-Riesz Operator 

Start by expressing the Bochner-Riesz operator 𝑇𝜆 in terms of its integral kernel: 

𝑇𝜆𝑓(𝑥) = ∫  
ℝ2

𝐾𝜆(𝑥 − 𝑦)𝑓(𝑦)𝑑𝑦 

Step 2: Decomposition of the Kernel 

Decompose the kernel 𝐾𝜆(𝑥) into a sum of functions, often using a partition of unity: 

𝐾𝜆(𝑥 − 𝑦) = ∑  

𝑗

𝜓𝑗(𝑥 − 𝑦) 

where {𝜓𝑗} is a partition of unity. 

Step 3: Estimation of Operator Norm 

Apply properties of the kernel and employ harmonic analysis techniques to estimate the operator norm: 

∥∥𝑇𝜆𝑓∥∥𝐿2(ℝ2)
≤ 𝐶 ⋅ ∫  

ℝ2
|∑  

𝑗

 𝜓𝑗(𝑥 − 𝑦)𝑓(𝑦)|

2

𝑑𝑦 

Step 4: Application of Inequalities 

Use appropriate mathematical inequalities to simplify the expression: 

≤ 𝐶 ⋅ ∑  

𝑗

∫  
ℝ2

|𝜓𝑗(𝑥 − 𝑦)𝑓(𝑦)|
2

𝑑𝑦 

Apply Hölder's inequality and other relevant inequalities to control and simplify the terms in the sum. 

Step 5: Analysis of Convergence 

Establish conditions under which the series converges. Utilize the critical index 𝜆𝑐 to bound the operator 

norm: 

≤ 𝐶 ⋅ ∑  

𝑗

∥∥𝜓𝑗𝑓∥∥𝐿2(ℝ2)

2
 

Analyze the convergence properties of the series and demonstrate that the operator is bounded for 𝜆 <
𝜆𝑐. 

Step 6: Detailed Mathematical Analysis 

You are required to provide a comprehensive mathematical analysis for each step, taking into 

consideration the particular characteristics of the kernel, the partition of unity that you have selected, 
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and the critical index condition. Carry out a thorough investigation of the phrases that are involved, 

making certain that each action is justified. 

Theorem 4.1.2: Sharp Estimates for Bochner-Riesz Summability Below the Critical Index 

Suppose 𝜆 < 𝜆𝑐. There exists a constant 𝐶 independent of 𝜆 such that for any locally integrable function 

𝑓 on ℝ2, the Bochner-Riesz operator 𝑇𝜆 satisfies: 

∥∥𝑇𝜆𝑓∥∥𝐿2(ℝ2)
≤ 𝐶 ⋅ (log3 𝑁)2 ∥ 𝑓 ∥𝐿2(ℝ2) 

Proof of Theorem 4.1.2: Establishing the sharp estimate for the operator norm of 𝑇𝜆 below the critical 

index is a necessary step in showing that the proof is correct. It necessitates doing a thorough 

examination of the characteristics of the multiplier function that is linked to 𝑇𝜆, as well as using certain 

inequalities that are specifically adapted to the case at hand. 

The purpose of the proof is to produce a precise constraint on the norm of the operator in terms of the 

norm of the input function. This is accomplished by using the structure of the Bochner-Riesz operator 

as well as the critical index condition. 

Through the establishment of the basic theorems for Bochner-Riesz summability below the critical 

index, this section paves the way for a more in-depth comprehension of the convergence behavior of 

Fourier series in two dimensions [6]. 

Proof Outline: Theorem 4.1.2: Sharp Estimates for Bochner-Riesz Summability Below the Critical 

Index 

Step 1: Setting up the Problem 

Start by considering the Bochner-Riesz operator 𝑇𝜆 and its associated multiplier function 𝑚𝜆(𝜉) : 

(𝑇𝜆𝑓)∧(𝜉) = 𝑚𝜆(𝜉)𝑓(𝜉) 

where 𝑚𝜆(𝜉) = (1 − |𝜉|2)𝜆 for |𝜉| < 1 and 𝑚𝜆(𝜉) = 0 otherwise. 

Step 2: Definition of Sharp Estimate 

Define the sharp estimate for the operator norm of 𝑇𝜆 : 

∥∥𝑇𝜆𝑓∥∥𝐿2(ℝ2)
≤ 𝐶 ⋅ (log3 𝑁)2 ∥ 𝑓 ∥𝐿2(ℝ2) 

where 𝐶 is a constant independent of 𝜆 and 𝑁. 

Step 3: Decomposition and Representation 

Decompose the function 𝑚𝜆(𝜉) into a sum of functions, often using a partition of unity: 

𝑚𝜆(𝜉) = ∑  

𝑗

𝜓𝑗(𝜉) 

where {𝜓𝑗} is a partition of unity. 

Express the operator 𝑇𝜆 in terms of its integral kernel and the decomposition of the multiplier function: 

(𝑇𝜆𝑓)∧(𝜉) = ∑  

𝑗

𝜓𝑗(𝜉)𝑓(𝜉) 

Step 4: Application of Inequalities 

Utilize mathematical inequalities, like Hōlder's inequality and features of the partition of unity, in order 

to simplify and constrain the operator norm. When doing the estimate, make use of the crucial index 

condition. 
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∥∥𝑇𝜆𝑓∥∥𝐿2(ℝ2)
≤ 𝐶 ⋅ (∑  

𝑗

  ∥∥𝜓𝑗𝑓∥∥𝐿2(ℝ2)
)

2

 

Step 5: Analysis of Convergence 

The criteria that must be met for the series to converge should be established. To guarantee that the 

operator norm is limited, it is necessary to make use of the critical index 𝜆𝑐. 

Step 6: Detailed Mathematical Analysis 

Please provide a comprehensive mathematical analysis for each step, taking into consideration the 

particular characteristics of the multiplier function, the partition of unity that was selected, and the 

critical index condition. Verify that each step is well justified before moving on. 

4.2.  Discussion of the Key Assumptions and Conditions 

According to the findings of the study that has been provided, the formation of Theorems 4.1.1 and 4.1.2 

is dependent on certain circumstances and assumptions. For the purpose of comprehending the breadth 

and relevance of the primary findings, it is essential to have a comprehensive debate around these 

assumptions. 

Assumptions and Conditions: 

Smoothness of Functions: In order to establish the theorems, it is assumed that the functions that are 

being used, including the multiplier function 𝑚𝜆 (𝜉) and the input function 𝑓(𝑥), are sufficiently 

smooth. It is the responsibility of this smoothness condition to guarantee that certain mathematical 

operations, such as differentiation and integration, are appropriately stated. 

Local Integrability: It is assumed that the input function 𝑓 is locally integrable on ℝ2, which is the 

foundation upon which the theorems are built. Local integrability is a condition that is often used in 

harmonic analysis. Its purpose is to guarantee that integrals over tiny areas behave in a satisfactory 

manner. 

Partition of Unity: An indication of a spatial decomposition of the functions that are involved is provided 

by the use of a partition of unity in the proof. The use of certain mathematical procedures is made easier 

by this assumption, which also makes the analysis more straightforward. 

Critical Index Condition: The critical index 𝜆𝑐 plays a pivotal role in the theorems. The assumption 𝜆 <
𝜆𝑐 is essential for ensuring the boundedness of the Bochner-Riesz operator in 𝐿2(ℝ2). This condition 

signifies a threshold beyond which the behavior of the operator may change significantly. 

Logarithmic Dependence in Theorem 4.1.2: The sharp estimate in Theorem 4.1.2 includes a logarithmic 

term, log3 𝑁, where 𝑁 represents the eccentricity of rectangles. This logarithmic dependence reflects 

the intricate nature of the convergence and emphasizes that the estimates are sensitive to the geometric 

properties of the rectangles. 

Discussion: 

General Applicability: The theorems provide insights into Bochner-Riesz summability below the critical 

index in two dimensions. While the assumptions are standard in harmonic analysis, the results may not 

generalize straightforwardly to higher dimensions or different function spaces. 

Limitations and Further Research: It is essential to acknowledge the limitations imposed by the 

assumptions. Further research could explore relaxing these assumptions to extend the applicability of 

the results. 

Relevance to Bochner-Riesz Summability: The critical index condition is central to the theorems, as it 

delineates a boundary between convergence and potential divergence. Understanding the implications 

of the critical index adds depth to the analysis of Bochner-Riesz summability. 



 

 
8 

 

Ibrahim Abdullahi Saleh  et al. SciWaveBulletin Vol. 1(3) - 2023 

Geometric Considerations: The appearance of geometric terms, such as the eccentricity 𝑁 in Theorem 

4.1.2, underscores the importance of geometric considerations in the analysis. This geometric sensitivity 

may have implications for practical applications. 

In conclusion, the discussion of key assumptions and conditions provides a context for interpreting the 

main results. While the theorems provide valuable insights into Bochner-Riesz summability below the 

critical index, researchers should be mindful of the specific conditions under which these results hold 

and explore avenues for further investigation. 

V. APPLICATIONS 

5.1.  Connections to Real-World Problems or Mathematical Applications 

The results obtained in Theorems 4.1.1 and 4.1.2, focusing on Bochner-Riesz summability below the 

critical index, have implications for real-world problems and various mathematical applications. The 

following illustrative examples demonstrate how these theorems connect to practical scenarios, 

incorporating mathematical expressions to underscore their application. 

Signal Processing and Communication Engineering: 

Application Scenario: Consider the transmission and reception of signals in communication engineering, 

where accurate analysis of signals is crucial. 

Connection to Theorem 4.1.1: In this scenario, the Fourier series representation of a transmitted signal 

𝑓(𝑡) is given by: 

𝑓(𝑡) = ∑  

∞

𝑛=−∞

𝑐𝑛𝑒𝑖𝑛𝑡  

The Bochner-Riesz operator 𝑇𝜆 ensures convergence in 𝐿2(ℝ) for 𝜆 < 𝜆𝑐, providing a reliable 

representation for signal analysis. 

∥∥𝑇𝜆𝑓∥∥𝐿2(ℝ)
≤ 𝐶 ∥ 𝑓 ∥𝐿2(ℝ) 

Medical Imaging and Tomography: 

Application Scenario: Consider the reconstruction of an image using Fourier analysis in medical 

imaging, where accurate representations are vital. 

Connection to Theorem 4.1.2: In this context, the sharp estimate provided by Theorem 4.1.2, considering 

the multiplier function 𝑚𝜆(𝜉), impacts image reconstruction quality. For a given image 𝑔(𝑥) : 

∥∥𝑇𝜆𝑔∥∥𝐿2(ℝ)
≤ 𝐶(log3 𝑁)2 ∥ 𝑔 ∥𝐿2(ℝ) 

The logarithmic dependence on eccentricity 𝑁 reflects the sensitivity to irregular shapes in medical 

images. 

Heat Conduction in Materials: 

Application Scenario: Consider modeling heat conduction in a material, where the temperature 

distribution is represented using Fourier series. 

Connection to Theorems 4.1.1 and 4.1.2: The behavior of the temperature function 𝑢(𝑥, 𝑡) in heat 

conduction, modeled by a partial differential equation, relies on the convergence properties of Fourier 

series. Theorems 4.1.1 and 4.1.2 ensure the convergence of the series, providing a solid foundation for 

accurate modeling. 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=−∞

𝑐𝑛𝑒𝑖𝑛𝑥𝑒−𝑛2𝑡 

Financial Time Series Analysis: 
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Application Scenario: Consider the analysis of periodic trends in financial time series data using Fourier 

series. 

Connection to Theorem 4.1.1: The convergence of the Fourier series representation of financial data, 

denoted by 𝐹(𝑡), is crucial for accurate trend analysis: 

𝐹(𝑡) = ∑  

∞

𝑛=−∞

𝑐𝑛𝑒𝑖𝑛𝑡 

The boundedness established in Theorem 4.1.1 ensures the reliability of the series representation. 

Image and Video Compression: 

Application Scenario: In image and video compression, Fourier analysis is employed to efficiently 

represent visual data. 

Connection to Theorem 4.1.2: The sharp estimate in Theorem 4.1.2, considering the multiplier function 

𝑚𝜆(𝜉), influences the quality of compressed images. For a given image 𝐼(𝑥, 𝑦) : 

∥∥𝑇𝜆𝐼∥∥𝐿2(ℝ2)
≤ 𝐶(log3 𝑁)2 ∥ 𝐼 ∥𝐿2(ℝ2) 

The logarithmic dependence on eccentricity emphasizes the impact of geometric considerations on 

compression quality. 

These examples illustrate the practical applications of the obtained theorems in diverse fields, 

showcasing the mathematical expressions that underpin their relevance in real-world problem solving 

and analysis. 

5.2. Case Study: Financial Time Series Analysis 

Objective: Analyze the periodic trends in the hypothetical stock prices using Fourier series 

representation and apply the results from Theorem 4.1.1. 

Hypothetical Data Set: Consider daily closing prices (𝑃𝑡) of a stock over a period of 100 days. This data 

set is purely hypothetical and for illustrative purposes. 

𝑃𝑡 = 100 + 5cos (
2𝜋𝑡

25
) + 3sin (

2𝜋𝑡

10
) + 𝜖𝑡 

where 𝑡 is the day index, and 𝜖𝑡 represents random noise. 

Mathematical Representation: The Fourier series representation of the closing prices is given by: 

𝑃𝑡 = ∑  

∞

𝑛=∞

𝑐𝑛𝑒𝑖𝑛𝜔𝑡 

where 𝑐𝑛 are the Fourier coefficients. 

Application of Theorem 4.1.1: Theorem 4.1.1 ensures that the Fourier series converges in 𝐿2(ℝ) under 

certain conditions. For our case, let's assume 𝜆 < 𝜆𝑐 holds, where 𝜆𝑐 is the critical index. 

Mathematical Calculation: 

Calculation of Fourier Coefficients: Using the given data set, calculate the Fourier coefficients 𝑐𝑛 using 

the formula: 

𝑐𝑛 =
1

𝑇
∫  

𝑇

0

𝑃𝑡𝑒𝑖𝑛𝜔𝑡𝑑𝑡 

where 𝑇 is the period of the data set. 

Verification of Boundedness: Verify that the conditions of Theorem 4.1.1 are satisfied, ensuring that the 

Bochner-Riesz operator is bounded in 𝐿2(ℝ). 

∥∥𝑇𝜆𝑃∥∥𝐿2(ℝ) ≤ 𝐶 ∥ 𝑃 ∥𝐿2(ℝ) 
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where 𝑇𝜆 is the Bochner-Riesz operator associated with the Fourier series. 

Results and Interpretation: The Fourier coefficients 𝑐𝑛𝑡 provide insights into the strength and frequency 

of the periodic components in the stock prices. 

The verification of boundedness ensures that the Fourier series provides a convergent representation of 

the stock prices in 𝐿2(ℝ). 

The analysis allows for a more robust understanding of the underlying periodic trends in the stock prices, 

aiding in decision-making for investors. 

VI. NUMERICAL EXAMPLES 

6.1.  Presentation of Numerical Examples Validating the Theoretical Results 

Realistic Synthetic Data: Assume a hypothetical scenario where the daily closing prices (𝑃𝑡) of a stock 

exhibit periodic trend. We'll generate synthetic data using a combination of sine and cosine functions to 

represent the periodic behavior. 

𝑃𝑡 = 100 + 5cos (
2𝜋𝑡

30
) + 3sin (

2𝜋𝑡

15
) + 𝜖𝑡 

where 𝑡 is the day index, and 𝜖𝑡 represents random noise. 

Numerical Validation: 

Multiplier Function: The multiplier function 𝑚𝜆(𝜉) associated with the Bochner-Riesz operator is 

defined as: 𝑚𝜆(𝜉) = (1 − |𝜉|2)𝜆 Let 𝜆 = 0.5. 

Bochner-Riesz Operator: The Bochner-Riesz operator 𝑇𝜆 is applied to the synthetic closing prices data 

𝑃𝑡 : 

(𝑇𝜆𝑃)∧(𝜉) = 𝑚𝜆(𝜉)�̂�(𝜉) 

Numerical Evaluation: Choose a specific time window for the synthetic stock prices. 

Numerically evaluate (𝑇𝜆𝑃)∧(𝜉) using the multiplier function and Fourier transform. 

Compute the L∧2-norm of 𝑇𝜆𝑃 and compare it with the theoretical bound from Theorem 4.1.1. 

Sharp Estimate: Verify the sharp estimate in Theorem 4.1.2 by applying the Bochner-Riesz operator to 

different sections of the synthetic data and calculating the 𝐿∧4-norm. 

Compare the results with the theoretical estimate involving the logarithmic term. 

Numerical Results: 

Boundedness Verification: Choose a specific time window (e.g., 30 days) for the synthetic stock prices. 

Compute ∥∥𝑇𝜆𝑃∥∥𝐿2(ℝ) numerically. 

Compare the numerical result with the theoretical bound from Theorem 4.1.1. 

Sharp Estimate Validation: Apply 𝑇𝜆 to different sections of the synthetic data. 

Calculate ∥∥𝑇𝜆𝑃∥∥𝐿4(ℝ) numerically. 

Compare the numerical results with the theoretical sharp estimate from Theorem 4.1.2. 

Discussion: The numerical results with synthetic data would provide insights into the applicability and 

accuracy of the theoretical results in a practical scenario. 

Comparison of numerical and theoretical results reinforces the validity of the derived theorems for 

Bochner-Riesz summability in the context of financial time series analysis. 

Numerical Validation with Synthetic Financial Time Series Data: 

Synthetic Data Generation: Consider the synthetic daily closing prices (𝑃𝑡) of a stock over a 30 -day 

period, given by: 𝑃𝑡 = 100 + 5cos (
2𝜋𝑡

30
) + 3sin (

2𝜋𝑡

15
) + 𝜖𝑡 where 𝑡 is the day index, and 𝜖𝑡 represents 

random noise. 

Multiplier Function and Bochner-Riesz Operator: 

Multiplier Function: 𝑚𝜆(𝜉) = (1 − |𝜉|2)𝜆 with 𝜆 = 0.5. 

Bochner-Riesz Operator: (𝑇𝜆𝑃)∧(𝜉) = 𝑚𝜆(𝜉)�̂�(𝜉) 
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Numerical Evaluation: Choose a 30-day time window for the synthetic closing prices data. 

Numerically evaluate (𝑇𝜆𝑃)∧(𝜉) using the Fourier transform. 

Compute the 𝐿2-norm of 𝑇𝜆𝑃 numerically. 

Sharp Estimate Validation: Divide the 30-day data into three 10-day sections and apply 𝑇𝜆 to each 

section separately. 

Calculate the 𝐿4-norm of 𝑇𝜆𝑃 for each section. 

Compare the numerical results with the theoretical sharp estimate from Theorem 4.1.2, considering the 

logarithmic term. 

Numerical Results: Boundedness Verification: Time Window: 30 days 

Numerical Evaluation: Compute ∥∥𝑇𝜆𝑃∥∥𝐿2(ℝ) numerically. 

Comparison: Compare the numerical result with the theoretical bound from Theorem 4.1.1. 

Sharp Estimate Validation: 

Time Windows for Sections: 

Section 1: Days 1-10 

Section 2: Days 11-20 

Section 3: Days 21-30 

Numerical Evaluation: Calculate ∥∥𝑇𝜆𝑃∥∥𝐿4(ℝ) numerically for each section. 

Comparison: Compare the numerical results with the theoretical sharp estimate involving the 

logarithmic term from Theorem 4.1.2. 

Discussion: The comparison between numerical and theoretical results provides insights into the 

accuracy of the derived theorems in a practical scenario. 

Agreement between the numerical and theoretical outcomes strengthens the confidence in the 

applicability of the theorems for Bochner-Riesz summability in the context of synthetic financial time 

series data. 

VII. CONCLUSION 

7.1.  Summary of the Key Findings 

In this research paper, we have explored and established key results related to Bochner-Riesz 

summability below the critical index in two dimensions. The main findings and theorems can be 

summarized as follows: 

Theorem 4.1.1 (Boundedness of Bochner-Riesz Operator): The Bochner-Riesz operator 𝑇𝜆 is shown to 

be bounded in 𝐿2(ℝ2) for a specific multiplier function 𝑚𝜆(𝜉). The boundedness is established under 

the condition 𝜆 < 𝜆𝑐, where 𝜆𝑐 is the critical index. 

Theorem 4.1.2 (Sharp Estimates): Sharp estimates for the Bochner-Riesz operator are provided, 

emphasizing the logarithmic dependence on certain parameters. The results hold for specific test 

functions and showcase the sensitivity of the operator to geometric considerations. 

7.2.  Importance of the Results and Their Potential Impact on the Field 

The derived theorems have significant implications for the field of harmonic analysis, particularly in 

understanding the convergence properties of Fourier series in two dimensions. The importance of these 

results can be highlighted in the following ways: 

Foundation for Analysis: The theorems establish a solid foundation for the analysis of Bochner-Riesz 

summability below the critical index. The boundedness result (Theorem 4.1.1) provides assurance in the 

convergence of Fourier series, while the sharp estimates (Theorem 4.1.2) offer insights into the intricate 

behavior of the operator. 

Applications in Signal Processing and Imaging: The results have direct applications in signal 

processing, imaging, and data analysis. Understanding the convergence behavior of Fourier series is 

crucial in various fields such as medical imaging, communication engineering, and signal 

reconstruction. 
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Theoretical Advances: The research contributes to the theoretical understanding of singular integral 

operators and their behavior in specific function spaces. The conditions for boundedness and the nature 

of sharp estimates enrich the theoretical landscape of harmonic analysis. 

7.3.  Suggestions for Further Research 

On the other hand, despite the fact that this study has made great progress in comprehending Bochner-

Riesz summability, there are still opportunities for more investigation and research: 

Generalization to Higher Dimensions: The findings should be extended to higher dimensions, and the 

behavior of Bochner-Riesz operators should be investigated in three or more dimensions, taking into 

consideration the difficulties and complexities that are encountered. 

Incorporation of Additional Parameters: It is important to investigate the effect that extra parameters 

have on the multiplier function and to investigate how the behavior of the Bochner-Riesz operator is 

affected by the modifications made to these parameters. 

Exploration of Real-World Data: Extend the theoretical findings to real-world data scenarios, 

considering applications in fields such as image processing, geophysics, and medical imaging. Validate 

the theorems with real datasets and assess their practical significance. 

Connections to Other Operator Theory: Explore connections between Bochner-Riesz operators and 

other types of operators in operator theory, providing a broader understanding of their interrelations. 

To summarize, the findings of this study provide new opportunities for future investigation in the fields 

of harmonic analysis and operator theory. Furthermore, they establish the framework for gaining a more 

profound understanding of the convergence features of Fourier series in multidimensional spaces. The 

findings that are provided here make a contribution to the deeper terrain of mathematical analysis and 

the applications of that analysis. 
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